


(b)

The figure shows the two circuits formed from the circuit in Figure P31.63 when the switch is open and when the switch is closed.

Solve: (a) Using the rules of series and parallel resistors, we have simplified the circuit in two steps as shown in figure (a). A battery with emf $\mathcal{E} = 24$ V is connected to an equivalent resistor of 3 Ω . The current in this circuit is $24 \text{ V}/3 \Omega = 8 \text{ A}$. Thus, the current that flows through the battery is $I_{\text{bat}} = 8 \text{ A}$. To determine the potential difference ΔV_{ab} , we will find the potentials at point a and point b and then take their difference. To do this, we need the currents I_{a} and I_{b} . We note that the potential difference across the 3 Ω -3 Ω branch is the same as the potential difference across the 5 Ω -1 Ω branch. So,

$$\mathcal{E} = 24 \text{ V} = I_a(3 \Omega + 3 \Omega) \implies I_a = 4 \text{ A} = I_b$$

Now, $V_c - I_a(3 \Omega) = V_a$, and $V_c - I_b(5 \Omega) = V_b$. Subtracting these two equations give us ΔV_{ab} :

$$V_{a} - V_{b} = I_{b}(5 \ \Omega) - I_{a}(3 \ \Omega) = (4 \ A)(5 \ \Omega) - (4 \ A)(3 \ \Omega) = +8 \ V$$

(b) Using the rules of the series and the parallel resistors, we have simplified the circuit as shown in figure (b). A battery with emf $\mathcal{E} = 24$ V is connected to an equivalent resistor of $\frac{21}{8}\Omega$. The current in this circuit is $24 \text{ V}/\frac{21}{8} \Omega = 9.143$ A. Thus, the current that flows through the battery is $I_{\text{bat}} = 9.14$ A. When the switch is closed, points a and b are connected by an ideal wire and must therefore be at the same potential. Thus $V_{ab} = 0$ V.